The 3.0AEBP-3m antenna positioner is designed and built to provide high reliability while withstanding severe environmental conditions. A high-quality, high-precision elevation-over-azimuth satellite tracking antenna suitable for operation in X-Band and below. The 3.0AEBP utilizes orbital data bus technology to provide integrated control of the antenna positioner and RF payload. Superior engineering, precision manufacturing, and strict quality control standards result in maintenance free operation making it the optimal choice for service in remote locations and hostile climates.

System Features
Standard equipment includes the positioner, feed mounting poles, antenna control unit, uncomplicated and easy to understand operation and maintenance manuals, and functional tool kit. The positioner provides standard options for AC or DC power and 100BASE-T Ethernet within the elevation arm-mounted electronics enclosure.

Reception loss caused by what is sometimes called a “keyhole effect” is eliminated by the high speed of azimuth rotation in Orbital Systems’ two axis products. When tracking a near overhead pass the antenna uses a predictive motion with a peak azimuth velocity of 60 degrees/sec, and acceleration at up to 60 degrees/sec². These very high speeds completely eliminate loss of signals on a worst case near overhead pass in X-Band and below.

System Control and Tracking
- ACU-2 antenna control unit is standard and enables flexible control options
- Tracks satellites at X Band and below without keyhole effect
- Customized controller interface options are available

Motors and Gears
- Mechanical system components are fully integrated with IP65-rated brushless servomotors and integrated brakes, matched and tuned motor drives, and heavy duty gears
- Gears are automatically heated to maintain optimal performance at temperatures as low as -40°C
- Gears are completely enclosed in a cast housing and operate inside a controlled and optimal environment increasing their service life; no annual lubrication required

Pressurization
- Antenna positioner and feed are pressurized with dehydrated air or nitrogen to prevent corrosion of internal system components
- Dry air is supplied using conventional transmission line dehydrator technology
- Temperature and humidity sensors in the electrical cabinet and feed are monitored by the antenna control unit which automatically purges the system of moisture when detected
- System remains operational if pressurization fails

Reflectors and Feeds
- Supplied with a 3.0m spun aluminum reflector
- Equipped with feed poles for use with Orbital Systems’ feeds
- Single or Multi-Band feeds available with optional downconverters and polarity switching
- Feeds are equipped with purge valves to expel moisture from the system
- Feed communication is integrated into the antenna control unit over the orbital data bus (ODB)

Special Order Options
- Mains A/C power supplied through antenna positioner for elevation arm-mounted electronics
- Gigabyte Ethernet through antenna positioner
- Additional RF channels through antenna positioner
- Additional data pairs through antenna positioner
- Optical multi-mode fiber through antenna positioner

Applications
The 3.0AEBP-3m antenna is typically used for the following applications
- (EOS-DB) - Earth Observing Systems - Direct Broadcast data, tracking LEO and MEO satellites:
 - TERRA
 - AQUA
 - SNPP
 - JPSS-1
 - FY3
 - METOP
 - NOAA POES
 - DMSP*
- TT&C - general satellite uplink and downlink telemetry, including microsats
- RADAR applications for advanced meteorological and environmental analysis
- SARSAT - Search and Rescue reception of MEO satellites in S- and L- Bands
*encrypted except when passing over the north and south poles
3.0AEBP-3m Antenna Positioner Specifications

Operational Specifications

<table>
<thead>
<tr>
<th>Required</th>
<th>Continuous Capable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azimuth Maximum Velocity</td>
<td>57°/Sec</td>
</tr>
<tr>
<td>Azimuth Maximum Acceleration</td>
<td>39°/Sec²</td>
</tr>
<tr>
<td>Azimuth Maximum Continuous Torque</td>
<td>>1586 Nm (>1170 ft/lbs)</td>
</tr>
<tr>
<td>Azimuth Maximum Travel</td>
<td>Continuous Rotation</td>
</tr>
<tr>
<td>Elevation Maximum Velocity</td>
<td>9°/Sec</td>
</tr>
<tr>
<td>Elevation Maximum Acceleration</td>
<td>0.9°/Sec²</td>
</tr>
<tr>
<td>Elevation Maximum Continuous Torque</td>
<td>>1586 Nm (>1170 ft/lbs)</td>
</tr>
<tr>
<td>Elevation Maximum Travel</td>
<td>184°</td>
</tr>
<tr>
<td>Brake Holding Torque</td>
<td>1947 Nm (>1436 ft/lbs)</td>
</tr>
<tr>
<td>Mechanical Total Tracking Accuracy</td>
<td>±0.10°</td>
</tr>
<tr>
<td>Absolute Position Feedback Accuracy</td>
<td>±0.02°</td>
</tr>
</tbody>
</table>

Electrical, Mechanical, and Environmental Specifications

- **Input Voltage, Frequency**: 208 - 240 VAC, 20 A, 50/60 Hz, Single Phase
- **Input Amperage**: Typical 5 A; Maximum 15 A; Uses Standard 20 A Breaker
- **Operating Altitude**: 3000m Above Sea Level
- **Operating Temperature**: -40° C to +55° C
- **Operating Maximum Wind Speed**: Continuous 88 km/h (55 mph), gust to 105 km/h (65 mph)
- **Maximum Wind Speed With Stow Pins Installed**: 200 km/h (125 mph)
- **Non-Operating Maximum Rain Load**: 25 cm (10 inches) Per Hour
- **Maximum Ice Load**: 13 mm (0.5 inches)
- **Weight**: 710 kg (1565 lbs)
- **Safety, Emissions, and Machinery Directive Ratings**: CE Marked; Tested by Independent Labs

Electrical Cabinet and External Controls

The electrical cabinet is equipped with the following safety devices:

- Emergency stop switch
- Audible warning annunciator
- Visual warning indicator
- Padlocks to lock the left and right sides of the electrical cabinet

3.0AEBP-3m antenna positioners are compliant with CE Machinery Directive IEC 60204-1